Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Biol Macromol ; : 132240, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38744360

RESUMEN

Current treatment of snakebite relies on immunoglobulin-rich antivenoms. However, production of these antivenoms is complicated and costly. Aptamers - single-stranded DNAs or RNAs with specific folding structures that bind to specific target molecules - represent excellent alternatives or complements to antibody-based therapeutics. However, no studies have systematically assessed the feasibility of using aptamers to mitigate venom-induced toxicity in vivo. ß-bungarotoxin is the predominant protein responsible for the toxicity of the venom of Bungarus multicinctus, a prominent venomous snake inhabiting Taiwan. In this study, we reported the screening and optimization of a DNA aptamer against ß-bungarotoxin and tested its utility in a mouse model. After 14 rounds of directed evolution of ligands by exponential enrichment, an aptamer, called BB3, displaying remarkable binding affinity and specificity for ß-bungarotoxin was obtained. Following structural prediction and point-modification experiments, BB3 underwent truncation and was modified with 2'-O-methylation and a 3'-inverted dT. This optimized aptamer showed sustained, high-affinity binding for ß-bungarotoxin and exhibited remarkable nuclease resistance in plasma. Importantly, administration of this optimized aptamer extended the survival time of mice treated with a lethal dose of ß-bungarotoxin. Collectively, our data provide a compelling illustration of the potential of aptamers as promising candidates for development of recombinant antivenom therapies.

2.
Int J Biol Macromol ; 262(Pt 2): 130080, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354918

RESUMEN

Animal testing has been the primary approach to assess the neutralization potency of antivenom for decades. However, the necessity to sacrifice large numbers of experimental animals during this process has recently raised substantial welfare concerns. Furthermore, the laborious and expensive nature of animal testing highlights the critical need to develop alternative in vitro assays. Here, we developed an antibody-detection enzyme-linked immunosorbent assay (ELISA) technique as an alternative approach to evaluate the neutralization potency of hyperimmunized equine plasma against B. multicinctus, a medically important venomous snake in Taiwan. Firstly, five major protein components of B. multicinctus venom, specifically, α-BTX, ß-BTX, γ-BTX, MTX, and NTL, were isolated. To rank their relative medical significance, a toxicity score system was utilized. Among the proteins tested, ß-BTX presenting the highest score was regarded as the major toxic component. Subsequently, antibody-detection ELISA was established based on the five major proteins and used to evaluate 55 hyperimmunized equine plasma samples with known neutralization potency. ELISA based on ß-BTX, the most lethal protein according to the toxicity score, exhibited the best sensitivity (75.6 %) and specificity (100 %) in discriminating between high-potency and low-potency plasma, supporting the hypothesis that highly toxic proteins offer better discriminatory power for potency evaluation. Additionally, a phospholipase A2 (PLA2) competition process was implemented to eliminate the antibodies targeting toxicologically irrelevant domains. This optimization greatly enhanced the performance of our assay, resulting in sensitivity of 97.6 % and specificity of 92.9 %. The newly developed antibody-detection ELISA presents a promising alternative to in vivo assays to determine the neutralization potency of antisera against B. multicinctus during the process of antivenom production.


Asunto(s)
Bungarotoxinas , Bungarus , Animales , Caballos , Bungarus/metabolismo , Bungarus multicinctus , Antivenenos , Taiwán , Ensayo de Inmunoadsorción Enzimática
3.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336364

RESUMEN

Targeted mass spectrometry is a powerful technique for quantifying specific proteins or metabolites in complex biological samples. Accurate peak picking is a critical step as it determines the absolute abundance of each analyte by integrating the area under the picked peaks. Although automated software exists for handling such complex tasks, manual intervention is often required to rectify potential errors like misclassification or mis-picking events, which can significantly affect quantification accuracy. Therefore, it is necessary to develop objective scoring functions to evaluate peak-picking results and to identify problematic cases for further inspection. In this study, we present targeted mass spectrometry quality encoder (TMSQE), a data-driven scoring function that summarizes peak quality in three types: transition level, peak group level, and consistency level across samples. Through unsupervised learning from large data sets containing 1,703,827 peak groups, TMSQE establishes a reliable standard for systematic and objective evaluations of chromatographic peak quality in targeted mass spectrometry. TMSQE shows a high degree of consistency with expert experiences and can efficiently capture problematic cases after the automated software. Furthermore, we demonstrate the generalizability of TMSQE by successfully applying it to various data sets, including both peptide and metabolite data sets. Our proposed scoring approach provides a reliable solution for consistent and accurate peak quality evaluation, facilitating peak quality control for targeted mass spectrometry.

4.
Anal Chem ; 95(42): 15486-15496, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37820297

RESUMEN

The process of peak picking and quality assessment for multiple reaction monitoring (MRM) data demands significant human effort, especially for signals with low abundance and high interference. Although multiple peak-picking software packages are available, they often fail to detect peaks with low quality and do not report cases with low confidence. Furthermore, visual examination of all chromatograms is still necessary to identify uncertain or erroneous cases. This study introduces HeapMS, a web service that uses artificial intelligence to assist with peak picking and the quality assessment of MRM chromatograms. HeapMS applies a rule-based filter to remove chromatograms with low interference and high-confidence peak boundaries detected by Skyline. Additionally, it transforms two histograms (representing light and heavy peptides) into a single encoded heatmap and performs a two-step evaluation (quality detection and peak picking) using image convolutional neural networks. HeapMS offers three categories of peak picking: uncertain peak picking that requires manual inspection, deletion peak picking that requires removal or manual re-examination, and automatic peak picking. HeapMS acquires the chromatogram and peak-picking boundaries directly from Skyline output. The output results are imported back into Skyline for further manual inspection, facilitating integration with Skyline. HeapMS offers the benefit of detecting chromatograms that should be deleted or require human inspection. Based on defined categories, it can significantly reduce human workload and provide consistent results. Furthermore, by using heatmaps instead of histograms, HeapMS can adapt to future updates in image recognition models. The HeapMS is available at: https://github.com/ccllabe/HeapMS.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Proteómica , Redes Neurales de la Computación , Programas Informáticos
5.
Int J Biol Macromol ; 242(Pt 2): 124969, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210050

RESUMEN

Snake envenoming is both a healthcare and socioeconomic problem for developing countries and underserved communities. In Taiwan, clinical management of Naja atra envenomation is a major challenge, since cobra venom-induced symptoms are usually confused with hemorrhagic snakebites and current antivenom treatments do not effectively prevent venom-induced necrosis for which early surgical debridement should be administered. Identification and validation of biomarkers of cobra envenomation is critical for progress in setting a realistic goal for snakebite management in Taiwan. Previously, cytotoxin (CTX) was determined as one of potential biomarker candidates; however, its ability to discriminate cobra envenoming remains to be verified, especially in clinical practice. In this study, we selected a monoclonal single-chain variable fragment (scFv) and a polyclonal antibody to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for CTX detection, which successfully recognized CTX from N. atra venom over that from other snake species. Using this specific assay, the CTX concentration in envenoming mice was shown to remain consistent in about 150 ng/mL during the 2-hour post-injection period. The measured concentration was highly correlated with the size of local necrosis in mouse dorsal skin, which the correlation coefficient is about 0.988. Furthermore, our ELISA method displayed 100 % of specificity and sensitivity in discriminating cobra envenoming among snakebite victims through CTX detection and the level of CTX in victim plasma was ranged from 5.8 to 253.9 ng/mL. Additionally, patients developed tissue necrosis at plasma CTX concentrations higher than 150 ng/mL. Thus, CTX not only serves as a verified biomarker for discrimination of cobra envenoming but also a potential indicator of severity of local necrosis. In this context, detection of CTX may facilitate reliable identification of envenoming species and improve snakebite management in Taiwan.


Asunto(s)
Elapidae , Mordeduras de Serpientes , Animales , Ratones , Antivenenos/farmacología , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/terapia , Citotoxinas , Venenos de Serpiente , Venenos Elapídicos , Ensayo de Inmunoadsorción Enzimática/métodos , Necrosis
6.
Trop Med Infect Dis ; 8(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36668958

RESUMEN

Snakebite envenoming is a public health issue linked to high mortality and morbidity rates worldwide. Although antivenom has been the mainstay treatment for envenomed victims receiving medical care, the diverse therapeutic efficacy of the produced antivenom is a major limitation. Deinagkistrodon acutus is a venomous snake that poses significant concern of risks to human life in Taiwan, and successful production of antivenom against D. acutus envenoming remains a considerable challenge. Among groups of horses subjected to immunization schedules, few or none subsequently meet the quality required for further scale-up harvesting. The determinants underlying the variable immune responses of horses to D. acutus venom are currently unknown. In this study, we assessed the immunoprofiles of high-potency and low-potency horse plasma against D. acutus venom and explored the conspicuous differences between these two groups. Based on the results of liquid chromatography with tandem mass spectrometry (LC-MS/MS), acutolysin A was identified as the major component of venom proteins that immunoreacted differentially with the two plasma samples. Our findings indicate underlying differences in antivenoms with variable neutralization efficacies, and may provide valuable insights for improvement of antivenom production in the future.

7.
Polymers (Basel) ; 14(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956554

RESUMEN

Early diagnosis of metastatic colorectal cancer (mCRC) is extremely critical to improve treatment and extend survival. W3 is an aptamer that can specifically bind to mCRC cells with high affinity. Graphene oxide (GO) is a two-dimensional graphitic carbon nanomaterial, which has widely used in constructing biosensors. In this study, we have developed a no-wash fluorescent aptasensor for one-step and sensitive detection of mCRC LoVo cells. It is based on fluorescence resonance energy transfer (FRET) between GO and the W3 aptamer labeled with 5-carboxyfluorescein (FAM). GO can quench the green fluorescence of the FAM-labeled W3 (FAM-W3). In the presence of the target cells, FAM-W3 preferentially binds the target cells and detaches from the surface of GO, leading to the fluorescence of FAM recovery. It was demonstrated that the fluorescence recovery increases linearly in a wide range of 0~107 cells/mL (R2 = 0.99). The GO-based FAM-labeled W3 aptasensor (denoted as FAM-W3-GO) not only specifically recognizes mCRC cell lines (LoVo and HCT116), but also sensitively differentiates the target cells from mixed cells, even in the presence of only 5% of the target cells. Furthermore, FAM-W3-GO was applied to detect LoVo cells in human whole blood, which showed good reproducibility with an RSD range of 1.49% to 1.80%. Therefore, FAM-W3-GO may have great potential for early diagnosis of mCRC. This strategy of GO-based fluorescent aptasensor provides a simple, one-step, and highly sensitive approach for the detection of mCRC cells.

8.
Toxins (Basel) ; 14(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35878197

RESUMEN

The Taiwanese cobra, Naja atra, is a clinically significant species of snake observed in the wild in Taiwan. Victims bitten by N. atra usually experience severe pain and local tissue necrosis. Although antivenom is available for treatment of cobra envenomation, its neutralization potency against cobra-induced necrosis is weak, with more than 60% of cobra envenoming patients developing tissue necrosis after antivenom administration. The present study found that cytotoxin (CTX) is a key component of N. atra venom responsible for cytotoxicity against myoblast cells. Anti-CTX IgY was generated in hens, and the spleens of these hens were used to construct libraries for the development of single chain variable fragments (scFv). Two anti-CTX scFv, S1 and 2S7, were selected using phage display technology and biopanning. Both polyclonal IgY and monoclonal scFv S1 reacted specifically with CTX in cobra venom. In a cell model assay, the CTX-induced cytolytic effect was inhibited only by monoclonal scFv S1, not by polyclonal IgY. Moreover, the neutralization potency of scFv S1 was about 3.8 mg/mg, approximately three times higher than that of conventional freeze-dried neurotoxic antivenom (FNAV). Collectively, these results suggest that scFv S1 can effectively neutralize CTX-induced cytotoxicity and, when combined with currently available antivenom, can improve the potency of the latter, thereby preventing tissue damage induced by cobra envenoming.


Asunto(s)
Naja naja , Anticuerpos de Cadena Única , Animales , Antivenenos/farmacología , Pollos , Citotoxinas , Venenos Elapídicos/toxicidad , Elapidae , Femenino , Mioblastos , Necrosis , Anticuerpos de Cadena Única/farmacología
9.
Toxins (Basel) ; 13(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34822602

RESUMEN

Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28-42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.


Asunto(s)
Antivenenos/inmunología , Proteínas Neurotóxicas de Elápidos/inmunología , Venenos Elapídicos/inmunología , Péptidos/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Ensayo de Inmunoadsorción Enzimática , Caballos , Masculino , Ratones , Ratones Endogámicos ICR , Naja naja
10.
Toxins (Basel) ; 13(2)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668416

RESUMEN

Snake envenomation is a serious public health issue in many tropical and subtropical countries. Accurate diagnosis and immediate antivenom treatment are critical for effective management. However, the venom concentration in the victims' plasma is usually low, representing one of the bottlenecks in developing clinically applicable assays for venom detection and snakebite diagnosis. In this study, we attempted to develop a simple method for rapid enrichment of venom proteins from human plasma to facilitate detection. Our experiments showed that several major protein components of both Naja atra (N. atra) and Bungarus multicinctus (B. multicinctus) venoms have higher isoelectric point (pI) values relative to high-abundance human plasma proteins and could be separated via strong cation exchange-high-performance liquid chromatography (SCX-HPLC). Based on this principle, we developed an SCX tip column-based protocol for rapid enrichment of N. atra and B. multicinctus venom proteins from human plasma. Application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) led to the identification of cytotoxin and beta-bungarotoxin as the major proteins enriched by the SCX tip column in each venom sample. The entire process of venom enrichment could be completed within 10-15 min. Combination of this method with our previously developed lateral flow strip assays (rapid test) significantly enhanced the sensitivity of the rapid test, mainly via depletion of the plasma protein background, as well as increase in venom protein concentration. Notably, the SCX tip column-based enrichment method has the potential to efficiently enrich other Elapidae snake venoms containing proteins with higher pI values, thereby facilitating venom detection with other assays. This simple and rapid sample preparation method should aid in improving the clinical utility of diagnostic assays for snakebite.


Asunto(s)
Bungarus , Resinas de Intercambio de Catión/química , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Venenos Elapídicos/sangre , Naja naja , Proteínas de Reptiles/sangre , Mordeduras de Serpientes/diagnóstico , Animales , Biomarcadores , Bungarotoxinas/sangre , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Mordeduras de Serpientes/sangre , Espectrometría de Masas en Tándem , Factores de Tiempo , Flujo de Trabajo
11.
J Proteomics ; 234: 104084, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359941

RESUMEN

Protobothrops mucrosquamatus, also known as the brown spotted pit viper or Taiwanese habu, is a medically significant venomous snake in Taiwan, especially in the northern area. To more fully understand the proteome profile of P. mucrosquamatus, we characterized its venom composition using a bottom-up proteomic approach. Whole venom components were fractionated by RP-HPLC and then analyzed by SDS-PAGE. Each protein band in gels was excised and subjected to protein identification by LC-MS/MS. A subsequent proteomic analysis revealed the presence of 61 distinct proteins belonging to 19 families in P. mucrosquamatus venom. Snake venom metalloproteinase (SVMP; 29.4%), C-type lectin (CLEC; 21.1%), snake venom serine protease (SVSP; 17.6%) and phospholipase A2 (PLA2; 15.9%) were the most abundant protein families, whereas several low-abundance proteins, categorized into eight protein families, were demonstrated in P. mucrosquamatus venom for the first time. Because PLA2 is known to make a major contribution to venom lethality, we evaluated whether the known PLA2 inhibitor, varespladib, was capable of preventing the toxic effects of P. mucrosquamatus venom. This small-molecule drug demonstrated the ability to inhibit PLA2 activity in vitro (IC50 = 101.3 nM). It also blunted lethality in vivo, prolonging survival following venom injection in a mouse model, but it showed limited potency against venom-induced local hemorrhage in this model. Our findings provide essential biological and pathophysiological insights into the composition of P. mucrosquamatus venom and suggest PLA2 inhibition as an adjunctive or alternative therapeutic strategy in the clinical management of P. mucrosquamatus envenoming in emergency medicine. SIGNIFICANCE: P. mucrosquamatus envenomation is a significant medical concern in Taiwan, especially in the northern region. Although antivenom is commonly used for rescuing P. mucrosquamatus envenoming, severe clinical events still occur, with more than 20% of cases requiring surgical intervention. Small-molecule therapy offers several advantages as a potential adjunctive, or even alternative, to antivenom treatment, such as heat stability, low antigenicity and ease of administration, among others. A deeper understanding of the venom proteome of P. mucrosquamatus would aid in the discovery of small-molecule drugs that could be repurposed to target specific venom proteins. Here, we applied a bottom-up proteomic approach to characterize the protein profile of P. mucrosquamatus venom. Varespladib, a small-molecule drug used to treat inflammatory disease, was repurposed to inhibit the toxicity of P. mucrosquamatus venom, and was shown to reduce the lethal effects of P. mucrosquamatus envenomation in a rodent model. Varespladib might be used as a first-aid therapeutic against P. mucrosquamatus envenoming in the pre-referral period and/or as an adjunctive agent administered together with anti-P. mucrosquamatus antivenom.


Asunto(s)
Proteoma , Trimeresurus , Acetatos , Animales , Antivenenos , Cromatografía Liquida , Indoles , Cetoácidos , Ratones , Fosfolipasas A2 , Proteómica , Roedores , Venenos de Serpiente , Taiwán , Espectrometría de Masas en Tándem
12.
Anal Chim Acta ; 1100: 118-130, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987131

RESUMEN

Oral cavity cancer is a common cancer type that presents an increasingly serious global problem. Oral squamous cell carcinoma (OSCC) accounts for >90% oral cancer cases. No biomarker tests are currently available for management of this cancer type in clinical practice. Previously, we validated matrix metalloproteinase-1 (MMP1) as one of the most promising salivary biomarkers for OSCC detection. Development of a convenient, rapid and high-throughput assay should further facilitate application of salivary MMP1 measurement for early detection of OSCC. The present study aimed to develop a workflow comprising dry saliva spot (DSS) sampling and immunoenrichment-coupled MALDI-TOF MS (immuno-MALDI) analysis to quantify salivary MMP1. We generated recombinant MMP1 protein and anti-peptide antibodies against MMP1, which were used to optimize the procedures of the entire workflow, including DSS sampling, on-paper protein digestion and elution, KingFisher magnetic particle processor-assisted immuno-enrichment and MALDI-TOF MS analysis. The established workflow was applied to measure salivary MMP1 levels in DSS samples from 5 healthy donors and 9 OSCC cases. The newly developed workflow showed good precision (intra-day and inter-day variations <10%) and accuracy (80-100%) in quantification of MMP1 in DSS samples, with the limit of quantification at 3.07 ng/ml. Using this assay, we successfully detected elevated salivary MMP1 levels (ranging from 5.95 to 242.52 ng/ml) in 7 of 9 OSCC cases while MMP1 was not detectable in samples from the 5 healthy donors. In comparison, the traditional immunoassay was not effective in measuring MMP1 in DSS samples, highlighting the significant advantage of our immuno-MALDI assay. The DSS sampling format confers high flexibility and convenience of collection, storage and delivery of saliva specimens and the KingFisher-assisted immuno-MALDI analysis renders the assay as suitable for high-throughput screening. By combining the two features, the workflow developed in this study should facilitate improvement of molecular diagnostic tests for OSCC using salivary MMP1 as a biomarker.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Células Escamosas/sangre , Pruebas con Sangre Seca , Metaloproteinasa 1 de la Matriz/sangre , Neoplasias de la Boca/sangre , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/enzimología , Humanos , Inmunoquímica , Metaloproteinasa 1 de la Matriz/metabolismo , Neoplasias de la Boca/enzimología , Proteínas Recombinantes/sangre , Proteínas Recombinantes/metabolismo , Saliva , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Proteomics ; 211: 103571, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31689561

RESUMEN

For oral cancer, numerous saliva- and plasma-derived protein biomarker candidates have been discovered and/or verified; however, it is unclear about the behavior of these candidates as saliva or plasma biomarkers. In this study, we developed two targeted assays, MRM and SISCAPA-MRM, to quantify 30 potential biomarkers in both plasma and saliva samples collected from 30 healthy controls and 30 oral cancer patients. Single point measurements were used for target quantification while response curves for assay metric determination. In comparison with MRM assay, SISCAPA-MRM effectively improved (>1.5 fold) the detection sensitivity of 11 and 21 targets in measurement of saliva and plasma samples, respectively. The integrated results revealed that the salivary levels of these 30 selected biomarkers weakly correlated (r < 0.2) to their plasma levels. Five candidate biomarkers (MMP1, PADI1, TNC, CSTA and MMP3) exhibited significant alterations and disease-discriminating powers (AUC = 0.914, 0.827, 0.813, 0.77, and 0.753) in saliva sample; nevertheless, no such targets could be found in plasma samples. Our data support the notion that saliva may be more suitable for the protein biomarker-based detection of oral cancer, and the newly developed SISCAPA-MRM assay could be applied to verify multiple oral cancer biomarker candidates in saliva samples. SIGNIFICANCE: In this work we systematically determined the abundance of 30 selected targets in the paired saliva and plasma samples to evaluate the utility of saliva and plasma samples for protein biomarker-based detection of oral cancer. Our study provides significant evidence to support the use of saliva, but not blood samples, offer more opportunity to achieve the success of protein biomarker discovery for oral cancer detection.


Asunto(s)
Neoplasias de la Boca , Saliva , Biomarcadores , Biomarcadores de Tumor , Humanos , Espectrometría de Masas , Neoplasias de la Boca/diagnóstico , Proteómica
14.
PLoS Negl Trop Dis ; 12(12): e0007014, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30507945

RESUMEN

Taiwan is an island located in the south Pacific, a subtropical region that is home to 61 species of snakes. Of these snakes, four species-Trimeresurus stejnegeri, Protobothrops mucrosquamatus, Bungarus multicinctus and Naja atra-account for more than 90% of clinical envenomation cases. Currently, there are two types of bivalent antivenom: hemorrhagic antivenom against the venom of T. stejnegeri and P. mucrosquamatus, and neurotoxic antivenom for treatment of envenomation by B. multicinctus and N. atra. However, no suitable detection kits are available to precisely guide physicians in the use of antivenoms. Here, we sought to develop diagnostic assays for improving the clinical management of snakebite in Taiwan. A two-step affinity purification procedure was used to generate neurotoxic species-specific antibodies (NSS-Abs) and hemorrhagic species-specific antibodies (HSS-Abs) from antivenoms. These two SSAbs were then used to develop a sandwich ELISA (enzyme-linked immunosorbent assay) and a lateral flow assay comprising two test lines. The resulting ELISAs and lateral flow strip assays could successfully discriminate between neurotoxic and hemorrhagic venoms. The limits of quantification (LOQ) of the ELISA for neurotoxic venoms and hemorrhagic venoms were determined to be 0.39 and 0.78 ng/ml, respectively, and the lateral flow strips were capable of detecting neurotoxic and hemorrhagic venoms at concentrations lower than 5 and 50 ng/ml, respectively, in 10-15 min. Tests of lateral flow strips in 21 clinical snakebite cases showed 100% specificity and 100% sensitivity for neurotoxic envenomation, whereas the sensitivity for detecting hemorrhagic envenomation samples was 36.4%. We herein presented a feasible strategy for developing a sensitive sandwich ELISA and lateral flow strip assay for detecting and differentiating venom proteins from hemorrhagic and neurotoxic snakes. A useful snakebite diagnostic guideline according to the lateral flow strip results and clinical symptoms was proposed to help physicians to use antivenoms appropriately. The two-test-line lateral flow strip assay could potentially be applied in an emergency room setting to help physicians diagnose and manage snakebite victims.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Mordeduras de Serpientes/diagnóstico , Serpientes/fisiología , Animales , Antivenenos/inmunología , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática/instrumentación , Femenino , Humanos , Ratones Endogámicos C57BL , Mordeduras de Serpientes/sangre , Mordeduras de Serpientes/parasitología , Serpientes/clasificación , Serpientes/inmunología , Taiwán
15.
J Proteomics ; 187: 59-68, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929037

RESUMEN

Deinagkistrodon acutus, Trimeresurus stejnegeri, Protobothrops mucrosquamatus, Daboia russelii siamensis, Bungarus multicinctus and Naja atra are the six medically important venomous snake species in Taiwan. In this study, we characterized and compared their venom protein profiles using proteomic approaches. The major snake venom proteins were identified by GeLC-MS/MS and the total venom proteome was characterized by in-solution digestion coupled with LC-MS/MS. A total of 27-52 proteins, categorized into 23 protein families, were identified in each snake's venom. The major venom components found in Viperidae species (D. acutus, T. stejnegeri, P. mucrosquamatus and D. russelii) were C-type lectin, snake venom serine proteinase, venom metalloproteinase and phospholipase A2, whereas three-finger toxin and phospholipase A2 were the major components detected in the venom of Elapidae snakes (B. multicinctus and N. atra). This study also provided the first demonstration of some low-abundance proteins in these six snake venoms, including 5'-nucleotidase, glutaminyl-peptide cyclotransferase and phosphodiesterase, among others. Furthermore, we found that cobra venom factor (CVF) is a cobra-specific protein. We produced anti-peptide antibodies against CVF and used it to develop a highly sensitive SISCAPA-MRM assay for quantifying CVF. The limit of detection and lower limit of quantification were 3.2 and 9.6 attomoles, respectively. This assay was used to precisely quantify CVF in 1 µg crude venom proteins from three Naja species and king cobra. The amount of CVF varied from 0.9 to 54.36 femtomoles (equivalent to 0.16-10.03 mg/g of venom protein). BIOLOGICAL SIGNIFICANCE: There are six medically significant venomous snakes in Taiwan. The venoms of the four Viperidae species (Deinagkistrodon acutus, Trimeresurus stejnegeri, Protobothrops mucrosquamatus and Daboia russelii siamensis) cause local tissue swelling; this symptom is also seen in N. atra envenomation in humans, potentially complicating the differential diagnosis of envenomation by N. atra and Viperidae species. Thus, characterization of the venom proteomes of the six Taiwanese snakes, including the relative abundance of the major components and species-specific protein(s) in each venom type, could be useful for future venom research, including the development of new assay(s) for detecting snake species-specific venom protein(s) and new type(s) of antivenom.


Asunto(s)
Venenos Elapídicos/análisis , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Venenos de Serpiente/análisis , Animales , Anticuerpos/análisis , Anticuerpos/química , Antivenenos/análisis , Antivenenos/química , Bungarus , Cromatografía Liquida , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae , Marcaje Isotópico/métodos , Naja naja , Proteoma/química , Proteoma/metabolismo , Venenos de Serpiente/química , Venenos de Serpiente/metabolismo , Especificidad de la Especie , Taiwán , Espectrometría de Masas en Tándem/métodos , Viperidae
16.
Proteomics Clin Appl ; 12(2)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29350471

RESUMEN

PURPOSE: Saliva is an attractive sample source for the biomarker-based testing of several diseases, especially oral cancer. Here, we sought to apply multiplexed LC-MRM-MS to precisely quantify 90 disease-related proteins and assess their intra- and interindividual variability in saliva samples from healthy donors. EXPERIMENTAL DESIGN: We developed two multiplexed LC-MRM-MS assays for 122 surrogate peptides representing a set of disease-related proteins. Saliva samples were collected from 10 healthy volunteers at three different time points (Day 1 morning and afternoon, and Day 2 morning). Each sample was spiked with a constant amount of a 15 N-labeled protein and analyzed by MRM-MS in triplicate. Quantitative results from LC-MRM-MS were calculated by single-point quantification with reference to a known amount of internal standard (heavy peptide). RESULTS: The CVs for assay reproducibility and technical variation were 13 and 11%, respectively. The average concentrations of the 99 successfully quantified proteins ranged from 0.28 ± 0.58 ng mL-1 for profilin-2 (PFN2) to 8.55 ±8.96 µg mL-1 for calprotectin (S100A8). For the 90 proteins detectable in >50% of samples, the average CVs for intraday, interday, intraindividual, and interindividual samples were 38%, 43%, 45%, and 69%, respectively. The fluctuations of most target proteins in individual subjects were found to be within ± twofold. CONCLUSIONS AND CLINICAL RELEVANCE: Our study elucidated the intra- and interindividual variability of 90 disease-related proteins in saliva samples from healthy donors. The findings may facilitate the further development of salivary biomarkers for oral and systemic diseases.


Asunto(s)
Voluntarios Sanos , Proteómica/métodos , Proteínas y Péptidos Salivales/metabolismo , Adulto , Cromatografía Liquida , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Factores de Tiempo
17.
Mol Cell Proteomics ; 16(10): 1829-1849, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28821604

RESUMEN

Oral cancer is one of the most common cancers worldwide, and there are currently no biomarkers approved for aiding its management. Although many potential oral cancer biomarkers have been discovered, very few have been verified in body fluid specimens in parallel to evaluate their clinical utility. The lack of appropriate multiplexed assays for chosen targets represents one of the bottlenecks to achieving this goal. In the present study, we develop a peptide immunoaffinity enrichment-coupled multiple reaction monitoring-mass spectrometry (SISCAPA-MRM) assay for verifying multiple reported oral cancer biomarkers in saliva. We successfully produced 363 clones of mouse anti-peptide monoclonal antibodies (mAbs) against 36 of 49 selected targets, and characterized useful mAbs against 24 targets in terms of their binding affinity for peptide antigens and immuno-capture ability. Comparative analyses revealed that an equilibrium dissociation constant (KD ) cut-off value < 2.82 × 10-9 m could identify most clones with an immuno-capture recovery rate >5%. Using these mAbs, we assembled a 24-plex SISCAPA-MRM assay and optimized assay conditions in a 25-µg saliva matrix background. This multiplexed assay showed reasonable precision (median coefficient of variation, 7.16 to 32.09%), with lower limits of quantitation (LLOQ) of <10, 10-50, and >50 ng/ml for 14, 7 and 3 targets, respectively. When applied to a model saliva sample pooled from oral cancer patients, this assay could detect 19 targets at higher salivary levels than their LLOQs. Finally, we demonstrated the utility of this assay for quantification of multiple targets in individual saliva samples (20 healthy donors and 21 oral cancer patients), showing that levels of six targets were significantly altered in cancer compared with the control group. We propose that this assay could be used in future studies to compare the clinical utility of multiple oral cancer biomarker candidates in a large cohort of saliva samples.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/diagnóstico , Espectrometría de Masas/métodos , Neoplasias de la Boca/diagnóstico , Proteómica/métodos , Saliva/química , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos/inmunología , Biomarcadores de Tumor/metabolismo , Simulación por Computador , Humanos , Inmunoensayo , Límite de Detección , Ratones , Péptidos/inmunología
18.
Expert Rev Proteomics ; 14(9): 737-756, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28695748

RESUMEN

INTRODUCTION: Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets. Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials. Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias/genética , Proteoma/genética , Proteómica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología
19.
Proc Natl Acad Sci U S A ; 113(41): 11549-11554, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663741

RESUMEN

Most cases of oral squamous cell carcinoma (OSCC) develop from visible oral potentially malignant disorders (OPMDs). The latter exhibit heterogeneous subtypes with different transformation potentials, complicating the early detection of OSCC during routine visual oral cancer screenings. To develop clinically applicable biomarkers, we collected saliva samples from 96 healthy controls, 103 low-risk OPMDs, 130 high-risk OPMDs, and 131 OSCC subjects. These individuals were enrolled in Taiwan's Oral Cancer Screening Program. We identified 302 protein biomarkers reported in the literature and/or through in-house studies and prioritized 49 proteins for quantification in the saliva samples using multiple reaction monitoring-MS. Twenty-eight proteins were successfully quantified with high confidence. The quantification data from non-OSCC subjects (healthy controls + low-risk OPMDs) and OSCC subjects in the training set were subjected to classification and regression tree analyses, through which we generated a four-protein panel consisting of MMP1, KNG1, ANXA2, and HSPA5. A risk-score scheme was established, and the panel showed high sensitivity (87.5%) and specificity (80.5%) in the test set to distinguish OSCC samples from non-OSCC samples. The risk score >0.4 detected 84% (42/50) of the stage I OSCCs and a significant portion (42%) of the high-risk OPMDs. Moreover, among 88 high-risk OPMD patients with available follow-up results, 18 developed OSCC within 5 y; of them, 77.8% (14/18) had risk scores >0.4. Our four-protein panel may therefore offer a clinically effective tool for detecting OSCC and monitoring high-risk OPMDs through a readily available biofluid.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Carcinoma de Células Escamosas/patología , Cromatografía Liquida , Demografía , Detección Precoz del Cáncer , Chaperón BiP del Retículo Endoplásmico , Femenino , Estudios de Seguimiento , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Neoplasias de la Boca/patología , Estadificación de Neoplasias , Factores de Riesgo , Saliva/metabolismo , Taiwán
20.
Anal Chim Acta ; 933: 144-55, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27497007

RESUMEN

The BRAF V600E mutation is one of the most common mutations implicated in the development of several types of cancer including colorectal cancer (CRC), where it is associated with aggressive disease phenotypes and poor outcomes. The status of the BRAF V600E mutation is frequently determined by direct DNA sequencing. However, no previous study has sought to quantify the BRAF V600E protein in cancer specimens. Here, we evaluated immunoenrichment coupled with two MS-based quantitative techniques, namely multiple reaction monitoring (MRM) and single ion monitoring conjugated accurate inclusion mass screening (SIM-AIMS), to detect and precisely quantify wild-type (WT) and V600E mutant BRAF proteins in DNA sequence-confirmed CRC tissue specimens. WT and V600E BRAF proteins were immunoprecipitated from a CRC cell line (HT-29), and their representative peptides ((592)IGDFGLATVK(601) and (592)IGDFGLATEK(601), respectively) were confirmed by LC-MS/MS analysis and then quantified by MRM or SIM-AIMS with spiked stable isotope-labeled peptide standards. Both assays worked well for measuring WT BRAF from different amounts of HT-29 cell lysates, but the MRM assay was more sensitive than SIM-AIMS assay for quantifying lower levels of V600E BRAF. In protein extracts (2 mg) from 11 CRC tissue specimens, the MRM assay could measure WT BRAF in all 11 cases (0.32-1.66 ng) and the V600E BRAF in two cases (0.1-0.13 ng; mutant-to-WT ratio, 0.16-0.17). The SIM-AIMS assay could also detect WT and V600E BRAF in CRC specimens, but the measured levels of both targets were lower than those determined by MRM assay. Collectively, this study provides an effective method to precisely quantify WT and V600E BRAF proteins in complex biological samples using immunoenrichment-coupled targeted MS. Since the V600E BRAF protein has emerged as an important therapeutic target for cancer, the developed assay should facilitate future BRAF-related basic and clinical studies.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Proteínas Proto-Oncogénicas B-raf/análisis , Proteínas Proto-Oncogénicas B-raf/inmunología , Humanos , Espectrometría de Masas , Mutación , Proteínas Proto-Oncogénicas B-raf/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...